
STUDENT COMPUTING IN MATHEMATICS:
INTERFACE DESIGN

FRANK QUINN

Abstract. This is the first in a series of articles on a computing environment

designed to support learning in mathematics and other technical areas. They

draw on many years experience with students working with computers and in
computer environments, discovering unexpected learning problems and trying

to fix them.

The main point is that human learning is quite complex and as we move
away from the tightly–bundled package of hand calculation in traditional class-

rooms the full complexity is coming into play. There are more ways for learning

to fail than most of us imagined; many are different from the things educators
traditionally look for and are hard to recognize; and underlying causes are

obscure.

This article concerns basic student–computer interactions. Among many
other things we see that standard cut-and-paste can undercut some learn-

ing objectives and has to be modified. The sequel (Student Computing in
Mathematics: Functionality) concerns computational functionality. Careful

limitations are needed to avoid turning the subject into keystroke sequences.

These articles are very speculative and intended as starting points for fur-
ther investigation, not a fixed prescription for a final product.

Contents

1. Introduction 1
1.1. Learning and the Interface 2
2. Guiding Principles 2
2.1. Learning, not Technology 3
2.2. Symbolization 3
2.3. Modes of Learning 4
2.4. Process, not Answers 7
3. Interface Design 8
3.1. Input Modes 8
3.2. Windows and Sessions 9
3.3. Input Formats 11
4. Summary 13

1. Introduction

I taught my first computer math course in 1975 and was convinced that it was
the wave of the future. However it was atypical—a very small class at Yale—and

Date: January 2009.

1

http://www.math.vt.edu/people/quinn/education/studentComputing2.pdf
http://www.math.vt.edu/people/quinn/education/studentComputing2.pdf

2 FRANK QUINN

later attempts were unsatisfactory: either too labor–intensive, or weak outcomes,
or (usually) both. I have helped develop computer–based and computer–tested
courses, but, ironically, the students still use by–hand computation.

Others have had similar experiences. Even after much tinkering, few college
courses use more than calculators.

Calculators are widely used in K–12 math but many college teachers now as-
sociate calculator training with deficiencies in symbolic skills, number sense, and
geometric understanding. Reasons calculators might undermine higher learning
emerge from the analysis in this essay. Current calculators may be nearly the worst
possible learning environment. In any case this cannot be considered successful.

Why has student computation been so problematic? The first problem seems
to be a lack of understanding of how people learn. The second is a lack of new
learning goals that computation should make accessible.

1.1. Learning and the Interface. We understand teaching very well, but teach-
ing evolved to produce learning in a traditional classroom and, in math, using
traditional techniques. It has turned out that many features of traditional good
teaching are artifacts of these environments, not features of learning. In particu-
lar simple substitution of technology for hand work in traditional lesson plans has
turned out to be a poor strategy.
§2 (Guiding Principles) gives a list of odd features of human learning and the

contortions needed to fit mathematics into it. The math material is relatively
general (support symbolic and abstract thinking, etc.) intended to guide design
of a learning–friendly interface. More content–specific material is discussed in the
sequel, Student Computing in Mathematics: Functionality.

The basis for this analysis is experience with computer–tested and computer–
based courses. These are a useful context for the study of learning because students
are the primary actors in formulating and implementing their learning strategies.
They can be guided but not as rigidly channelled as in traditional classes. I have
spent a lot of time watching students learn in this context and their approaches are
very different from what I tried to make them do in classrooms for thirty years.
§3 (Interface Design) applies these principles to find input methods, formats, and

interactivity designed to maximally support learning. Such an interface should, it
seems, be quite different from ones now in common use. Among the unexpected
conclusions is that ordinary copy-and-paste is counterproductive: it does not leave a
record that can be diagnosed for errors; and as a purely kinetic activity it undercuts
the use of symbols to represent other expressions. Learning–friendly alternatives
are proposed in §3.1.3 and §3.1.4.

2. Guiding Principles

This section gives some painfully–acquired insights about technology–enhanced
mathematical learning. The focus here is on human learning and generalities about
mathematics needed for interface design in the next section. Principles used to
guide functionality of the computational environment are discussed in the sequel.

The point of view is as important as specific insights: there is much more to be
learned and as we gain experience we must be alert to new insights that further
shape design.

http://www.math.vt.edu/people/quinn/education/studentComputing2.pdf

STUDENT COMPUTING IN MATHEMATICS: INTERFACE DESIGN 3

2.1. Learning, not Technology. Our objective is to help human beings learn.
Humans are the bottleneck: technology design should be completely driven by the
needs of human learning, not by availability, limitations, or capability of technology.
Examples:

• Calculators are cheap and effective; shouldn’t we exploit their availability?
No. Calculator design is constrained by low cost and small size, and they
are intended for calculation, not learning. They can be effective in meeting
modest short–range goals (e.g. in K–12) but are counterproductive in the
long run.
• Full–featured computer algebra systems have amazing capabilities; shouldn’t

we use them to “empower” students? No. They are designed for high–end
professional use, not learning. Students can easily get lost in full–featured
interfaces, and learning to mechanically use powerful black–box functions
usually fails to develop understanding that transcends the particular inter-
face or enables flexible general use.

To get good learning we must first understand learning, then we must design tech-
nology specifically to support learning. Anything off-the-shelf, or easily adapted
from something off-the-shelf, is almost certainly unsatisfactory.

2.2. Symbolization. Elementary mathematics divides roughly into conceptual and
mechanical (computational) steps. The goal of providing a computational environ-
ment is to enable focus on the conceptual activity. We discuss the division, then
how it should be organized.

2.2.1. Conceptual Activity. Conceptual activities include organizing information
and representing it ways suitable for computation. We refer to this as “symboliza-
tion” for several reasons:

• Material must be organized as symbolic expressions to be mechanically ma-
nipulated. Numbers are considered symbols here since their special prop-
erties only come into play in computational steps.
• Representing things as symbols is part of abstraction and a vital part of

mathematical thinking.

We expand on this last point. The human mind is quite limited in the number of
things that can be tracked or manipulated at one time. Fortunately the individual
things can be very complicated. Thinking about complicated material therefore
proceeds in two stages. The first stage is to identify good intermediate abstractions
to serve as conceptual units; pack as much structure as possible into these units;
and then develop enough automatic familiarity so we can actually see and use them
as units. The second stage is to think about interactions between a relatively small
number of these abstract units.

Representing things as symbols is only a small instance of the construction of
conceptual units but it plays a vital role in early learning of the methodology. In
particular if it is designed correctly it can serve as a model for later, more elaborate
instances.

2.2.2. Computation. What counts as mechanical computation—to be farmed out
to a machine—depends strongly on level. Why, and what to do about it, is the
subject of the sequel, Student Computing in Mathematics: Functionality. However

http://www.math.vt.edu/people/quinn/education/studentComputing2.pdf

4 FRANK QUINN

for the most part computation involves manipulation or evaluation of symbolic
expressions. In other words, computation acts on the output of symbolization.

2.2.3. Organization. As noted above our objective in providing computational sup-
port is to enable focus on symbolization. This can best be done by separating the
two activities as much as possible.

Traditional problem–solving usually alternates the activities: the general prac-
tice is to compute as soon as a computable chunk of the symbolization is complete.
These interruptions fragment symbolization, distract from organization, and con-
ceal mathematical structure. A computational environment should be exploited
to consolidate activities: symbolize first, then compute all at once, at least for
elementary work. See the essay Beneficial High–Stakes Math Tests: An Example
for an illustration of this in a specific simple example. In particular it is not a
good strategy to simply use machines for the computational steps in traditional
approaches.

Calculator work largely bypasses symbolization and mixes organization and com-
putation so thoroughly that higher–order learning is inhibited. See the reference
just above for an illustration. Another can be found in §3.1 of Task–oriented Math
Education.

2.3. Modes of Learning. The first general point is that human learning is strange
and complicated, and while there are commonalities there are also great differences
between individuals. A design goal is to support the commonalities while leaving
flexibility for individual preferences.

The second point is that over time the complexities of learning become trans-
parent. Character recognition and parsing of mathematical expressions become
automatic. The use of a keyboard to obtain characters on a screen becomes second
nature. This means the way experienced people do or learn things is not a guide to
how neophytes learn, and effective tools for experienced users can be barriers for
beginners.

We give examples in four cases: visual/kinetic reenforcement, visual/verbal reen-
forcement, the role of imitation, and subliminal learning. In each case we see that
technically inconvenient things may have to be done to connect with human learn-
ing.

2.3.1. Kinetic Reenforcement. There are interactions between visual input (read-
ing, seeing) and kinetic input (writing, drawing, copying) that seem to be important
for memory and internalization of certain types of structure.

Examples:
• Mathematical notation is precise and delicate: omitting or wrongly locating

a symbol, or misreading a statement, can completely change or destroy
meaning. Copying a problem by hand seems to improve comprehension
and reduce errors, and many traditional students are taught to do this
as a matter of good practice. Copying often does not make sense in an
electronic environment. We must be alert to problems caused by lack of
kinetic feedback, and may have to find a substitute.
• Very young children learn to generate and manipulate symbols kinetically

(by drawing them). This gets linked to visual recognition and alternate
entry modes (keystrokes) to eventually form a seamless unit not dependent
on drawing. Drawing does not translate easily to electronic environments,

http://www.math.vt.edu/people/quinn/education/example.pdf
http://www.math.vt.edu/people/quinn/education/taskoriented.pdf
http://www.math.vt.edu/people/quinn/education/taskoriented.pdf

STUDENT COMPUTING IN MATHEMATICS: INTERFACE DESIGN 5

but trying to reduce or eliminate it from early learning will probably cause
many children a lot of difficulty.
• Kinetic feedback seems to be vital for some students in internalization of

geometric structure. Specifically students taught to graph functions by
hand usually internalize the qualitative features of graphs of quadratic func-
tions, exponentials, simple rational functions etc. This internalization is
used strongly in later work involving plane and three-dimensional shapes,
multiple integrals, and the like. Students taught with graphing calculators
and tested by identifying a graph among several alternatives have been
trained completely visually. They have never, or rarely, picked up a pencil
and drawn the curve. And many of them cannot: apparently they have not
internalized qualitative features from the purely visual approach. Omitting
kinetic reenforcement puts these students at a disadvantage.

There are interesting examples in other subjects. Coloring books are a common
adjunct to anatomy texts. Apparently kinetic feedback from coloring in muscles,
bones etc. is helpful in fixing these complicated structures in memory.

Kinetic reenforcement might be incorporated in technology by, for instance, re-
quiring students to trace over a computer–generated graph before allowing them to
use it or submit it for a grade.

We caution that kinetic involvement alone is not a goal. Calculator arithmetic is
intensely kinetic but counterproductive because it replaces rather than reenforces
work with structure and symbols.

2.3.2. Verbal Reenforcement. Some people have strong verbal orientations. People
who move their lips when reading, for example, are translating from visual input
to kinetic (movement of lips and tongue). Their best comprehension is through the
kinetic channel, and comprehension falls if they have to rely on visual input alone
(trying to read while eating, or trying to read something—like mathematics—that
they can’t pronounce).

Errors that involve confusing or substituting symbols that sound the same indi-
cate verbal involvement. Confusing m and n, or M and m is probably a verbally–
based error, while confusing p and q is a (dyslectic) visual error.

Verbal is not the same as auditory: there is a profound difference between speak-
ing and hearing. Some students can transcribe lectures but can’t read their notes
out loud. Children in rural areas can listen to standard English on television for
many hours each day but only be able to speak an incomprehensible local dialect.
Hearing and speaking tend to be more tightly linked in later life but this is an
example of the transparency that can conceal basic features of learning.

A corollary of this point is that audio or audio–visual materials are not a substi-
tute for student verbalization. I do not have any clever ideas on how to incorporate
verbalization into technology. For the present this has to remain a job for teachers.

Implications in math education:

• Children should probably be taught to read (out loud) what they have
written. They should be encouraged to listen to what they say, and make
sure it is what they meant to say. In other words, run stuff through the
verbal channel to check it for accuracy.
• Students should be taught how to read material out loud. For instance

reading expressions involving parentheses can be tricky and this is probably

6 FRANK QUINN

related to the frequency of parenthesis–related errors. This difficulty is not
a justification for avoiding parentheses since this leads to serious problems
later on.
• Reading is closely related to parsing because reading requires linear orga-

nization. I have seen verbally–oriented students completely stumped by
notations such as Σn

i=1
i
2i that make use of positional information. They

usually find it tractable when taught how to parse it so they can read it
out loud.

2.3.3. Imitation. People learn a lot by watching other people do things provided
they can see how it is done. A teacher working a problem at a blackboard provides a
model that can be imitated. Exactly the same information presented using prepared
overhead slides, projected computer output, or PowerPoint cannot be imitated and
therefore deprives students of this primitive and innate learning mode.

There is a particular role for imitation in mathematics. Since we do things
one-at-a-time the construction of a mathematical expression is a linear dynamic
process.

• Mathematics itself is usually not linear so this process involves a lineariza-
tion, ideally one that follows mathematical structure.
• Parsing an expression, for instance to read it out loud (see the previous

section), also involves a linearization.
These two linearizations are often different. If students are not given examples to
imitate then they almost always try to use the parsing linearization, and this is less
efficient and more prone to errors than structural linearizations.

The following examples are fairly complex so opportunities for confusion will be
clear. Students will have similar problems with much simpler expressions:

• The structural linearization used to expand (a + b + c)10ex−5 has first step
a(. . .) + b(. . .) + c(. . .). We then enter the complicated expression inside
each pair of parentheses. The verbal linearization requires switching back
and forth between a, b, c and the complicated expression, and offers many
more opportunities for error.
• The structural linearization used to construct Σn

i=1
i
2i begins with Σ(. . .).

Filling in the parentheses is usually the next step and the limits come last.
In the verbal linearization the summation variable and limits come first,
not last. This invites errors like Σn

i=1
n
2n .

It is easy to see implications for machine–based examples and presentations: they
should be dynamic and emphasize the thinking behind each step. It is less clear
how this should influence design of a computational environment.

2.3.4. Subliminal Learning. Students can potentially learn from anything, and it
is often unclear exactly what they are learning. A consequence is that everything
should be designed so that if students do learn from it then they will learn correctly.

For instance by–hand arithmetic involves a lot of symbol manipulation and shows
mathematical structure in action. It may be that students internalize it and this
prepares them for algebra. Calculator arithmetic avoids symbols and hides structure
and so does not provide the same opportunities for subliminal learning.

As another example we describe how very young children can be offered an
opportunity to absorb a sophisticated mathematical viewpoint. Mathematicians
think of “addition” in functional terms: any binary operation that is associative,

STUDENT COMPUTING IN MATHEMATICS: INTERFACE DESIGN 7

commutative, has a neutral element and inverses is entitled to be called “addition”
and represented by “+”. One point of the abstraction is that work habits appro-
priate for integers and other elementary examples are equally valid for any other
“additive” system.

Now imagine showing a child that pretty much any two expressions that can be
entered into the computational environment can be combined using +. In general
this is just a property of these things, but you can see what it is good for in special
cases: if you combine numbers representing lengths of two sticks using + then you
get the total length of the two sticks joined together. In other words, finding lengths
of joined sticks is an application of + when it is applied to numbers. It is not the
definition, and + is not limited to numbers that can be interpreted as lengths. This
is not a point that should be made explicit to children, but the approach presents
it in a way that it can be absorbed subliminally.

2.4. Process, not Answers. The particular virtue of mathematics is that correct
use of correct methods gives correct answers. The focus in learning mathematics
should therefore be on methods and their use. The implication for the current
context is that a learning environment for mathematics should “show work” in the
sense of providing a record of the methods and reasoning used, and this record must
be usable for locating and targeted correction of reasoning errors. A wrong answer
only indicates that an error was made, not the nature of the error, and without a
diagnosable transcript the only recourse is to repeat the work and hope for a better
result the next time.

“Correction” here means fixing errors of reasoning or mathematically incorrect
methods, not conformity with a standard template. An alternative but mathemat-
ically correct approach does not need correction.

2.4.1. Learning from Process. In any other subject there is enough imprecision
in terms or context, or possibility of unanticipated factors, that careful logical
reasoning can fail to give a correct conclusion. It is still worthwhile because it
greatly improves the chances of getting a correct conclusion, and I believe that
experience with careful reasoning in complex logical systems is the greatest general
benefit of studying mathematics. In this sense the medium is the message.

2.4.2. The Role of Answers. Mathematics also has the virtue that incorrect reason-
ing usually gives an identifiably incorrect conclusion. This means correct answers
can be a useful proxy for correct reasoning. However this is only true if students are
using correct methodology. Independent checks on methodology should be possible,
and the reasoning itself should be available for diagnosis and correction when the
answer is wrong.

2.4.3. Diagnosis and Error Correction. Ideally every error should be diagnosed
and corrected. This would catch misunderstandings immediately, before they can
be reenforced by repetition. It would also encourage students to work carefully to
avoid triggering the diagnosis process.

Our best goal is for students to learn to detect, diagnose, and correct their own
mistakes. Teacher diagnosis and correction should offer models students can imi-
tate. Self–diagnosis can also be promoted by providing diagnostic aids for worked–
out problems, see Task–oriented Math Education, and the Teaching Notes on the
AMS Technical Careers web site. This is an aspect of problem design rather than

http://www.math.vt.edu/people/quinn/education/taskoriented.pdf
http://amstechnicalcareers.wikidot.com

8 FRANK QUINN

the learning environment, but it can only be effective if there is a record that
students could try to diagnose.

3. Interface Design

This section is concerned with structuring the interactions between student and
machine. Objectives established in the previous section include focus on organiza-
tion and construction of mathematical expressions (§2.2 Symbolization); supporting
learning modes such as kinetic reenforcement (§2.3.1); and producing a diagnosable
record (§2.4).

Much of the student–interface interaction looks like elementary programming.
This is implicit (or subliminal) rather than explicit, and is enforced by the struc-
ture of the interface. This is not an accident: programming requires extensive
symbolization and explicit use of structure and so is a good model for mathe-
matical learning. In fact it is completely compatible with the primary learning
objectives to take development of fluent use of high–level programming languages
as an additional long–term objective.

The section is divided into Input Modes, concerned with immediate interactions
between student and machine; Windows and Sessions, describing structure of in-
teractions, and Input Formats.

3.1. Input Modes. The primary input mode should be writing or drawing directly
on the screen with a stylus. Reasons include:

• For young children this avoids indirect input and provides kinetic reenforce-
ment for number and symbol formation;
• for all students it provides kinetic reenforcement of graphic work (§2.3.1);

and
• it enables easy and intuitive addition of commentary and reference tags.

3.1.1. Character Recognition. The interface has to provide character recognition,
but it should probably should not learn the user’s style. Reasons include:

• It is appropriate to expect reasonably clear character formation, and for
mathematical material it may be better for the interface to be a bit picky
about characters than to have to override inappropriate guesses. “Guess”
could be provided as a button.
• An adaptive system leads to non–portable input habits: they won’t work on

other machines, and in particular not on secure systems used for testing.
Some individual calibration will be necessary, for instance for left– and
right–handed differences, but this should be kept to a minimum to avoid
becoming a stumbling block.

It is not so important that text entry be portable, and careful math mode would
be available as a backup, so these considerations do not apply to text.

Anyone concerned about asking students to adapt to an interface should reflect
on how well they have adapted to a really terrible text interface: entering text on
a numeric keypad with their thumbs!

3.1.2. Keyboard. A standard keyboard should be provided for fast entry of text.
However there should be no function keys:

• Functions may be disabled.

STUDENT COMPUTING IN MATHEMATICS: INTERFACE DESIGN 9

• Functions should be considered parts of mathematical expressions, internal
to the symbolization process and recorded in the transcript, not as external
objects living on a keypad. Logarithms should be obtained by writing “Log”
and evaluating, not by pushing a button.
• In order to separate conceptual and computational steps we want students

to construct expressions, possibly including functions, and then evaluate
them. Immediate evaluation (via a function key) defeats this.

For similar reasons the interface should generally not depend on palettes for in-
sertion of symbols, patterns, or functions. It might provide lists or browsers from
which material can be copied in appropriate ways.

3.1.3. Copy-and-Paste via Symbols. Standard copy-and-paste has the same invis-
ibility and symbolization–defeating problems as function keys and so should be
strictly limited. We suggest substitutes for some of the functionality.

The first replacement for copy-and-paste is symbolic assignment. The student
can select an expression in a static window and assign it a name, for instance by
writing “A=” in the selection area. The expression can be used in an input window
by entering the name, “A”. When the name is referenced the selection and name
assignment should be frozen to preserve a record.

Example: A company has 47 employees with an average salary of $37,867. What
is the total payroll of the company?

The student can select 47 and write “emp=” in front of it, then select 37,867 and
write “sal=” in front of it. He then can enter “emp*sal” in the input window and
evaluate to get the answer. Alternately he could enter “payroll = emp*sal” to
have the output accessible for later use. Note this scheme subliminally supports
symbolic thinking, see §2.3.4, and provides a record of the work.

3.1.4. Copy-and-Paste via Tracing. The second replacement for copy-and-paste is
provided by tracing “templates”. The student selects something in a static window
and drags it to a work window. A dimmed copy appears. This cannot be evaluated
or further selected, but the student can trace over it to get a functional copy.

• For young students this provides kinetic reenforcement of character and
symbol formation, and construction of expressions.
• This provides kinetic reenforcement of graphic material, see §2.3.1.
• Expressions or graphic material can be modified rather than traced exactly.

Symbols could be changed to change the input into the expression, for
instance.

Again the selection area should be frozen and linked to the template to provide a
record.

3.1.5. Copy-and-Paste in an Input cell. Input cells in a Work window (§3.2.3)
should be an exception to these restrictions. These cells serve as “scratchpads”
and there currently seems to be no reason to disable full copy-and-paste within
such a cell.

3.2. Windows and Sessions. There should be three standard window types:
Data, Work, and Preview.

10 FRANK QUINN

3.2.1. Data Windows. These are static in the sense that they cannot be edited, but
annotations and selections can be made in an overlay.

Data windows can have form boxes in which material can be entered, for example
answers when the data window displays a test. Form boxes should be assigned
names so material can be entered either directly (by stylus or keyboard) or by
assignment. For instance in the payroll example in §3.1.3 the answer box might
be assigned the name “answer5” and the answer could be recorded by entering
“answer5 = emp*sal” in the Work window.

Note this design makes symbol use natural and helpful so it encourages symbol-
ization.

3.2.2. Preview Window. The preview window nicely formats expressions but does
not manipulate them. Expressions to be previewed are selected (in the usual way)
and a Preview button is activated.

• Error messages are issued, for instance when parentheses are unbalanced.
• The formatting displays how expressions will be interpreted. For instance

the expression 2^5 x will be previewed as 25x. If 25x was intended then
the mistake will be evident and appropriate parentheses added.
• Complex expressions should routinely be proofread using Preview. For

instance the TeX expression \Sigma^n_{i = 1} \frac{i}{5^i} is pre-
viewed as Σn

i=1
i
5i . If this is not what is intended then the input expression

can be edited.
• Some incomplete expressions should be previewed as expressions with boxes

for missing material rather than giving an error message. For instance the
incomplete Mathematica expression Integrate[, {y, }] should
be previewed as

∫
dy.

Preview material cannot be edited directly, nor can it be copied. If the source
window is static then the original selection can be assigned a name or can be used
to form a template. If the source is in an active input window then it can be edited.

3.2.3. Work Windows. Work windows are divided into alternating Input and Out-
put cells.

The bottommost Input cell is active, and can be edited, previewed, and eval-
uated. Results of evaluation appear in the Output cell immediately below. The
Output cell cannot be edited. The active Input and Output cells are dynamic so
cannot be annotated and the material in them cannot be selected for copying.

Input and Output cells other than the bottommost are static (have been frozen)
and cannot be edited. They can be annotated in the overlay, parts selected and
copied, etc.

The active Input cell can be repeatedly edited, previewed and evaluated. It
becomes inactive (is frozen) when a new Input cell is opened at the bottom of the
window or an End Session button is activated.

Input and Output cells can be deleted. Links and symbolic–copy material from
a deleted cell disappear with it. If the bottommost remaining cell is an Input cell
then it becomes active.

3.2.4. Sessions. A session consists of working in an Input cell, freezing it by opening
a new Input cell, and repeating as needed until the session is closed.

STUDENT COMPUTING IN MATHEMATICS: INTERFACE DESIGN 11

When a session is closed the Data and Working windows are linked and saved
together as a Data window. This preserves the work record because it can no longer
be edited. This record can be diagnosed for errors and annotations can be added
to record the diagnosis. It can also be used as a source to rework problems using
a new Work window. Correct fragments from the previous session can be spliced
in to reduce repetition and focus on corrections. All this provides support for the
diagnosis and targeted learning described in §2.4.

Closing the session may activate additional features. For instance if the Data
window contains a test then closing the session should activate scoring functions
to grade the test, and a section containing answers and diagnostic hints should
become accessible.

3.3. Input Formats. We have discussed how symbols and other material should
be entered in the interface. The topic here is how these objects should be arranged
to be accepted for processing. We will mostly be concerned with symbolic material.
There seems to be a role for an input format for graphics but it is far from clear what
should be involved. There should also be formats for data entry, for instance tables
of numbers, but these will be special–purpose and infrequently used. Entering a lot
of numbers is not a useful or real–life activity and data will usually be accessible
in electronic format.

The design is driven by concern for learning and based on watching and working
with students on computer projects in calculus and vector geometry. A particular
conclusion is that writing and reading need to be separated. A symbolic input
format must be easy to write and edit; it need not be easy to read. The beautiful
two–dimensional formats of typeset mathematics are easy to read but not easy to
write (for machine use) and not easy to edit. There is not going to be a satisfactory
single format. Instead we optimize formats for specific uses and use Preview and
other tools to negotiate between them.

3.3.1. Linear, Primitive, Explicit, Verbose. These are characteristics needed to
make the format easy for inexperienced users to write and edit. Sophisticated
or experienced users with other needs should use a different system.

“Linear” means in particular that the format should not incorporate positional
structure (a ∧ 5, not a5). Positional data entry invites mistakes and frustrating
misinterpretations. Positional representations are harder to edit. Finally, copying
part of a positional representation can fragment formatting instructions and lead
to bizarre results and obscure crashes.

“Primitive” essentially means limited to text. A good rule of thumb is that it
should be possible to send an input expression by email as text. We might accept
Unicode rather than ASCII so some symbols could be considered text. However
most mathematical functions should be spelled out in some way.

“Explicit” means everything in the expression must be visible. Invisible material,
for instance formatting instructions, is dangerous and not worth the trouble. “Un-
ambiguous” should be part of this. For instance multiplication is better denoted
by ∗ than × or a dot since the latter two are easily misinterpreted.

“Verbose” means that instructions and function names should be spelled out in
ways that are easy to guess and remember. For instance to get an integral one
should write out “Integral”, and then provide arguments. Abbreviated function

12 FRANK QUINN

names can be entered faster by experienced users but add a coding/decoding layer
that is difficult and distracting for students.

To repeat, the objective is a format that students can easily learn to write and
edit. The features listed above seem to help with this but do not guarantee success.
In particular, students learn most easily and naturally from examples and hints,
not explicit instruction. If students have trouble learning basic use of the format
from examples then the format needs improvement.

3.3.2. Mathematically Correct. It may seem odd that this needs explicit mention
but traditional notations and ways of thinking are sometimes imprecise, rely on
context, or are heuristic rather than really correct. In such cases correctness requires
a break with tradition.

For instance “=” is traditionally used in several different ways. The expression

y = ax2 + bx + c

may indicate an assignment : the symbol y is given the value of the expression on
the right side. Or it may indicate a test : a relation that is either true or false, as in
“Intersection points of the two curves are points (x, y) that satisfy . . . ”. Further,
an assignment can be immediate, in which case y is given the current value and
not effected by later changes in a, b, . . . ; or delayed, in which case y is a shorthand
for the right–side expression and it’s value at any particular time reflects current
values of a, b, It could even be an implicit assignment intended to specify a or
x, etc.

This notational ambiguity means a traditional expression containing “=” is in-
complete and must be accompanied by text indicating the meaning. Confusion
results when, as is too often the case, the text is omitted1. This is bad enough in
common practice and unacceptable in a machine environment.

A mathematically correct format must have different notations for these different
meanings, or support them in other ways (e.g. implicit assignment might be done
with a “solve” function rather than a variation on “=”). This will conflict with
ambiguity in traditional notation and language, but we should see this as a feature
(who needs self–inflicted notational confusion anyway?) rather than a flaw.

3.3.3. Graphics Input. An important objective in studying functions is to develop
a feel for qualitative features of their graphs. What does rest look like as a function
of t, independent of the values of r, s? How about r+(t−s)n? Beautiful computer–
generated graphs in specific cases are not a substitute for qualitative understanding.

It would be nice to have a full syntax and computational context for qualitative
graphic information, but for starters it would be useful just to have an input format.
Suppose we ask a student to draw a graph with the qualitative features of an
exponential function. How can we extract (mechanically) the qualitative features
of graphic input to determine if the drawing is reasonably correct?

Note that we really do want students to draw the graph by hand. Kinetic
reenforcement seems to be essential for some students (§2.3.1), and is probably
important for all, so this is another case where technical difficulty or convenience
cannot be allowed to override educational concerns.

1The confusion can even include a failure to recognize this as a notation problem. W. Byers in
How mathematicians think: using ambiguity, contradition, and paradox to create mathematics,

(Princeton U. Press 2007) argues that this reflects a basic ambiguity in mathematics itself!

STUDENT COMPUTING IN MATHEMATICS: INTERFACE DESIGN 13

4. Summary

The long–term goal is to better prepare K–14 students for advanced learning in
mathematics, science, engineering, and other technical disciplines. It seems obvious
that this should include systematic use of machine computation, but most attempts
have been counterproductive and none have been fully satisfactory.

The core problem seems to be that current computational environments do not
support the complex oddities of human learning. This essay describes a rough draft
for an interface design driven by this complexity and the structure of mathematics.
The final form will no doubt be different from this draft but it should also be clear
that it will be profoundly different from any current interface. It is also clear that
development of such an interface is a delicate and sophisticated undertaking.

The sequel, Student Computing in Mathematics: Functionality concerns the
need to carefully limit functionality of the computational environment.

http://www.math.vt.edu/people/quinn/education/studentComputing2.pdf

	1. Introduction
	1.1. Learning and the Interface

	2. Guiding Principles
	2.1. Learning, not Technology
	2.2. Symbolization
	2.3. Modes of Learning
	2.4. Process, not Answers

	3. Interface Design
	3.1. Input Modes
	3.2. Windows and Sessions
	3.3. Input Formats

	4. Summary

